6.Permutation and Combination
hard

The value of $\sum\limits_{r = 1}^{15} {{r^2}\,\left( {\frac{{^{15}{C_r}}}{{^{15}{C_{r - 1}}}}} \right)} $ is equal to

A

$1240$

B

$560$

C

$1085$

D

$680$

(JEE MAIN-2016)

Solution

$\sum\limits_{r = 1}^{15} {{r^2}} \,\left( {\frac{{{{15}_{{C_r}}}}}{{{{15}_{{C_{r – 1}}}}}}} \right)$

$\frac{{{{15}_{{C_r}}}}}{{{{15}_{C – 1}}}} = \frac{{\frac{{\frac{{15!}}{{15! – rr!}}}}{{15!}}}}{{r – 1!\,16 – r!}}$

$ = \frac{{\frac{{\frac{1}{{15 – r!\,r – 1!}}}}{1}}}{{r – 1!\,15 – r.(16 – r)!}}$

$ = \frac{{16 – r}}{r}$

$ = \sum\limits_{r = 1}^{15} {{r^2}} \left( {\frac{{16 – r}}{r}} \right) = \sum\limits_{r = 1}^{15} {r(16 – r)} $

$ = 16\sum\limits_{r = 1}^{15} {r – } \sum\limits_{r = 1}^{15} {{r^2}} $

$ = \frac{{16 \times 15 \times 16}}{2} – \frac{{15 \times 31 \times 16}}{6}$

$ = 8 \times 15 \times 16 – 5 \times 8 \times 31 = 1920 – 1240 = 680$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.